Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the Conjugate Index, Degenerate Conjugate Points and the Maslov Index in Semi-riemannian Geometry

We investigate the problem of the stability of the number of conjugate or focal points (counted with multiplicity) along a semi-Riemannian geodesic γ. For a Riemannian or a nonspacelike Lorentzian geodesic, such number is equal to the intersection number (Maslov index) of a continuous curve with a subvariety of codimension one of the Lagrangian Grassmannian of a symplectic space. In the general...

متن کامل

Stability of the Focal and Geometric Index in Semi-riemannian Geometry via the Maslov Index

We investigate the problem of the stability of the number of conjugate or focal points (counted with multiplicity) along a semi-Riemannian geodesic γ. For a Riemannian or a non spacelike Lorentzian geodesic, such number is equal to the intersection number (Maslov index) of a continuous curve with a subvariety of codimension one of the Lagrangian Grassmannian of a symplectic space. Such intersec...

متن کامل

On the Distribution of Conjugate Points along Semi-riemannian Geodesics

Helfer in [6] was the first to produce an example of a spacelike Lorentzian geodesic with a continuum of conjugate points. In this paper we show the following result: given an interval [a, b] of IR and any closed subset F of IR contained in ]a, b], then there exists a Lorentzian manifold (M, g) and a spacelike geodesic γ : [a, b] → M such that γ(t) is conjugate to γ(a) along γ iff t ∈ F .

متن کامل

On the Maslov Index of Symplectic Paths That Are Not Transversal to the Maslov Cycle. Semi-riemannian Index Theorems in the Degenerate Case

The Maslov index of a symplectic path, under a certain transversality assumption, is given by an algebraic count of the intersections of the path with a subvariety of the Lagrangian Grassmannian called the Maslov cycle. In these notes we use the notion of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to determine a formula for the computation of the Maslo...

متن کامل

On the Maslov Index of Lagrangian Paths That Are Not Transversal to the Maslov Cycle. Semi-riemannian Index Theorems in the Degenerate Case

The Maslov index of a Lagrangian path, under a certain transversality assumption, is given by an algebraic count of the intersections of the path with a subvariety of the Lagrangian Grassmannian called the Maslov cycle. In these notes we use the notion of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to determine a formula for the computation of the Maslo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2002

ISSN: 0030-8730

DOI: 10.2140/pjm.2002.206.375